Temperature
From Academic Kids

Temperature is the physical property of a system which underlies the common notions of "hot" and "cold"; the material with the higher temperature is said to be hotter. Temperature is a measure of the average kinetic energy of the particles in a sample of matter.
Contents 
General description
The formal properties of temperature are studied in thermodynamics.
Formally, temperature is that property which governs the transfer of thermal energy, or heat, between one system and another. When two systems are at the same temperature, they are in thermal equilibrium and no heat transfer will occur. When a temperature difference does exist, heat will tend to move from the higher temperature system to the lower temperature system, until thermal equilibrium is established. This heat transfer may occur via conduction, convection or radiation (see heat for additional discussion of the various mechanisms of heat transfer).
Temperature is related to the amount of thermal energy or heat in a system. As more heat is added the temperature rises, similarly a decrease in temperature corresponds to a loss of heat from the system. On the microscopic scale this heat corresponds to the random motion of atoms and molecules in the system. Thus, an increase in temperature corresponds in an increase in the rate of movement of the atoms in the system.
Temperature is an intrinsic property of a system, meaning that it does not depend on the system size or the amount of material in the system. Other intrinsic properties include pressure and density. By contrast, mass and volume are extrinsic properties, and depend on the amount of material in the system.
Applications
Temperature plays an important role in almost all fields of science, including physics, chemistry, and biology.
Many physical properties of materials including the phase (solid, liquid, gaseous or plasma), density, solubility, vapor pressure, and electrical conductivity depend on the temperature. Temperature also plays an important role in determining the rate and extent to which chemical reactions occur. This is one reason why the human body has several elaborate mechanisms for maintaining the temperature at 37 °C, since temperatures only a few degrees higher can result in harmful reactions with serious consequences. Temperature also controls the type and quantity of thermal radiation emitted from a surface. One application of this effect is the incandescent light bulb, in which a tungsten filament is electrically heated to a temperature at which significant quantities of visible light are emitted.
For information on temperature changes relevant to climate change or Earth's geologic past see: Temperature record
Temperature measurement
Many methods have been developed for measuring temperature. Most of these rely on measuring some physical property of a working material that varies with temperature. One of the most common devices for measuring temperature is the glass thermometer. This consists of a glass tube filled with mercury or some other liquid, which acts as the working fluid. Temperature increases cause the fluid to expand, so the temperature can be determined by measuring the volume of the fluid. Such thermometers are usually calibrated, so that one can read the temperature, simply by observing the level of the fluid in the thermometer. Another type of thermometer that is not really used much in practice, but is important from a theoretical standpoint is the gas thermometer mentioned below.
Other important devices for measuring temperature include:
 Thermocouples
 Thermistors
 Resistance Temperature Detector (RTD)
 Pyrometers
 Langmuir probes (for electron temperature of a plasma)
 Other thermometers
One must be careful when measuring temperature to ensure that the measuring instrument (thermometer, thermocouple, etc) is really the same temperature as the material that is being measured. Under some conditions heat from the measuring instrument can cause a temperature gradient, so the measured temperature is different from the actual temperature of the system. In such a case the measured temperature will vary not only with the temperature of the system, but also with the heat transfer properties of the system. An extreme case of this effect gives rise to the wind chill factor, where the weather feels colder under windy conditions than calm conditions even though the temperature is the same. What is happening is that the wind increases the rate of heat transfer from the body, resulting in a larger reduction in body temperature for the same ambient temperature.
Under some conditions it becomes possible to measure temperature by a direct use of the Planck's law of black body radiation. For example, the cosmic microwave background temperature has been measured from the spectrum of photons observed by satellite observations such as the WMAP. In the study of the quarkgluon plasma through heavyion collisions, single particle spectra sometimes serve as a thermometer.
See also: color temperature, Timeline of temperature and pressure measurement technology, Planck temperature
History of temperature measurement
In 1701, Ole Christensen Røemer (16441710) made one of the first practical thermometers. As a temperature indicator it used red wine. The temperature scale used for his thermometer had 0 representing the temperature of a salt and ice mixture (at about 259 K).
In 1708 Gabriel Fahrenheit (16861736) modified Rømer's scale and switched to mercury for more precise measurement. The Fahrenheit scale is still used in parts of the world.
In 1731, RenéAntoine Ferchault de Réaumur (16831757) made a simpler temperature scale. On this scale 0 represented the freezing point of water (273.15 K) and 80 represented the boiling point (373.15 K).
In 1742, Anders Celsius (17011744) invented the centigrade or Celsius temperature scale in which 100° represented the boiling point of water (373.15 K) and 0° represented the freezing point (273.15 K).
Units of temperature
The basic unit of temperature (symbol: T) in the International System of Units (SI) is the kelvin (K). One kelvin is formally defined as 1/273.16 of the temperature of the triple point of water (the point at which water, ice and water vapor exist in equilibrium). The temperature 0 K is called absolute zero and corresponds to the point at which the molecules and atoms have the least possible thermal energy. An important unit of temperature in theoretical physics is the Planck temperature (1.4 × 10^{32} K).
In the field of plasma physics, because of the high temperatures encountered and the electromagnetic nature of the phenomena involved, it is customary to express temperature in electron volts (eV) or kilo electron volts (keV), where 1 eV = 11,605 K. In the study of QCD matter one routinely meets temperatures of the order of a few hundred MeV, equivalent to about <math>10 ^{12}<math> K.
For everyday applications, it is often convenient to use the Celsius scale, in which 0 °C corresponds to the temperature at which water freezes and 100 °C corresponds to the boiling point of water at sea level. In this scale a temperature difference of 1 degree is the same as a 1 K temperature difference, so the scale is essentially the same as the kelvin scale, but offset by the temperature at which water freezes (273.15 K). Thus the following equation can be used to convert from Celsius to kelvin.
<math>\mathrm{K = [^\circ C] \left(\frac{1 \, K}{1\, ^\circ C}\right) + 273.15\, K}<math>
In the United States, the Fahrenheit scale is widely used. On this scale the freezing point of water corresponds to 32 °F and the boiling point to 212 °F. The following formula can be used to convert from Fahrenheit to Celsius:
<math>\mathrm{\ \!^\circ C = \frac{5\, ^\circ C}{9\, ^\circ F}([^\circ F]  32\, ^\circ F)}<math>
See temperature conversion formulas for conversions between most temperature scales.
Comment  kelvin¹  Celsius  Fahrenheit  Rankine  Delisle  Newton  Réaumur  Rømer 

Absolute zero  0  273.15  459.67  0  559.725  90.14²  218.52  135.90 
Fahrenheit's ice/salt mixture  255.37  17.78  0  459.67  176.67  5.87  14.22  1.83 
Water freezes (at standard pressure)  273.15  0  32  491.67  150  0  0  7.5 
Average human body temperature³  310.0  36.8  98.2  557.9  94.5  12.21  29.6  26.925 
Water boils  373.15  100  212  671.67  0  33  80  60 
Titanium melts  1941  1668  3034  3494  2352  550  1334  883 
¹ Only the kelvin, Celsius, Fahrenheit, and Rankine scales are in use today.
² Some numbers in this table have been rounded off.
³ Normal human body temperature is 36.8 °C ±0.7 °C, or 98.2 °F ±1.3 °F.
Articles about temperature ranges:
 10^{−12} K = 1 picokelvin (pK)
 10^{−9} K = 1 nanokelvin (nK)
 10^{−6} K = 1 microkelvin (µK)
 10^{−3} K = 1 millikelvin (mK)
 10^{0} K = 1 kelvin
 10^{1} K = 10 kelvins
 10^{2} K = 100 kelvins
 10^{3} K = 1,000 kelvin = 1 kilokelvin (kK)
 10^{4} K = 10,000 kelvins = 10 kK
 10^{5} K = 100,000 kelvins = 100 kK
 10^{6} K = 1 megakelvin (MK)
 10^{9} K = 1 gigakelvin (GK)
 10^{12} K = 1 terakelvin (TK)
Theoretical foundation of temperature
ZerothLaw definition of temperature
While most people have a basic understanding of the concept of temperature, its formal definition is rather complicated. Before jumping to a formal definition, let's consider the concept of thermal equilibrium. If two closed systems with fixed volumes are brought together, so that they are in thermal contact, changes may take place in the properties of both systems. These changes are due to the transfer of heat between the systems. When a state is reached in which no further changes occur, the systems are in thermal equilibrium.
Now a basis for the definition of temperature can be obtained from the 'zeroth law of Thermodynamics, which states that if two systems, A and B, are in thermal equilibrium and a third system C is in thermal equilibrium with system A then systems B and C will also be in thermal equilibrium (being in thermal equilibrium is a transitive relation; moreover, it is an equivalence relation). This is an empirical fact, based on observation rather than theory. Since A, B, and C are all in thermal equilibrium, it is reasonable to say each of these systems shares a common value of some property. We call this property temperature.
Generally, it is not convenient to place any two arbitrary systems in thermal contact to see if they are in thermal equilibrium and thus have the same temperature. Also, it would only provide an ordinal scale.
Therefore, it is useful to establish a temperature scale based on the properties of some reference system. Then, a measuring device can be calibrated based on the properties of the reference system and used to measure the temperature of other systems. One such reference system is a fixed quantity of gas. The ideal gas law indicates that the product of the pressure and volume (P · V) of a gas is directly proportional to the temperature:
 <math>
P \cdot V = n \cdot R \cdot T <math> (1)
where T is temperature, n is the number of moles of gas and R is the gas constant. Thus, one can define a scale for temperature based on the corresponding pressure and volume of the gas: the temperature in kelvins is the pressure in pascals of one mole of gas in a container of one cubic metre, divided by 8.31... In practice, such a gas thermometer is not very convenient, but other measuring instruments can be calibrated to this scale.
Equation 1 indicates that for a fixed volume of gas, the pressure increases with increasing temperature. Pressure is just a measure of the force applied by the gas on the walls of the container and is related to the energy of the system. Thus, we can see that an increase in temperature corresponds to an increase in the thermal energy of the system. When two systems of differing temperature are placed in thermal contact, the temperature of the hotter system decreases, indicating that heat is leaving that system, while the cooler system is gaining heat and increasing in temperature. Thus heat always moves from a region of high temperature to a region of lower temperature and it is the temperature difference that drives the heat transfer between the two systems.
Temperature in gases
As mentioned previously for a monatomic ideal gas the temperature is related to the translational motion or average speed of the atoms. The kinetic theory of gases uses statistical mechanics to relate this motion to the average kinetic energy of atoms and molecules in the system. For this case 7736 K = 7463 degrees Celsius corresponds to an average kinetic energy of one electronvolt; to take room temperature (300 K) as an example, the average energy of air molecules is 300/7736 eV, or 0.0388 electronvolts. This average energy is independent of particle mass, which seems counterintuitive to many people. Although the temperature is related to the average kinetic energy of the particles in a gas, each particle has its own energy which may or may not correspond to the average. However, after an examination of some basic physics equations it makes perfect sense. The second law of thermodynamics states that any two given systems when interacting with each other will later reach the same average energy. Temperature is a measure of the average kinetic energy of a system. The formula for the kinetic energy of an object (in this case a molecule) is:
 <math> K_t = \begin{matrix} \frac{1}{2} \end{matrix} mv^2 <math>
So a particle of greater mass (say a neon atom relative to a hydrogen molecule) will move slower than a lighter counterpart, but will have the same average energy. This average energy is independent of the mass because of the nature of a gas, all particles are in random motion with collisions with other gas molecules, solid objects that may be in the area and the container itself (if there is one). A visual illustration of this from Oklahoma State University (http://intro.chem.okstate.edu/1314F00/Laboratory/GLP.htm) makes the point more clear. Not all the particles in the container have different velocities, regardless of whether there are particles of more than one mass in the container, but the average kinetic energy is the same because of the ideal gas law. In a gas the distribution of energy (and thus speeds) of the particles corresponds to the Boltzmann distribution.
An electronvolt is a very small unit of energy, approximately 1.602×10^{19} joules.
Temperature of the vacuum
A system in a vacuum will radiate its thermal energy, i.e. convert heat into electromagnetic waves. It will do so until an equilibrium with the vacuum is found. This equilibrium will not be at 0 K if the vacuum is filled with electromagnetic waves. Conversely, the system can absorb energy from the vacuum if it contains intense electromagnetic waves.
At equilibrium, the radiation's spectrum will be the same as the radiation of a black body at the equilibrium temperature, so that one can say that the vacuum has that temperature. Far from equilibrium, the spectrum usually have very different shapes, and one temperature cannot be assigned to the vacuum anymore. Sometimes, a part of the spectrum follows that shape: for example one can say that the cosmic microwave background radiation, a part of the cosmic radiation, has a temperature of about 3 K.
SecondLaw definition of temperature
In the previous section temperature was defined in terms of the Zeroth Law of thermodynamics. It is also possible to define temperature in terms of the second law of thermodynamics, which deals with entropy. Entropy is a measure of the disorder in a system. The second law states that any process will result in either no change or a net increase in the entropy of the universe. This can be understood in terms of probability. Consider a series of coin tosses. A perfectly ordered system would be one in which every coin toss would come up either heads or tails. For any number of coin tosses, there is only one combination of outcomes corresponding to this situation. On the other hand, there are multiple combinations that can result in disordered or mixed systems, where some fraction are heads and the rest tails. As the number of coin tosses increases, the number of combinations corresponding to imperfectly ordered systems increases. For a very large number of coin tosses, the number of combinations corresponding to ~50% heads and ~50% tails dominates and obtaining an outcome significantly different from 50/50 becomes extremely unlikely. Thus the system naturally progresses to a state of maximum disorder or entropy.
Now, we have stated previously that temperature controls the flow of heat between two systems and we have just shown that the universe, and we would expect any natural system, tends to progress so as to maximize entropy. Thus, we would expect there to be some relationship between temperature and entropy. In order to find this relationship let's first consider the relationship between heat, work and temperature. A Heat engine is a device for converting heat into mechanical work and analysis of the Carnot heat engine provides the necessary relationships we seek. The work from a heat engine corresponds to the difference between the heat put into the system at the high temperature, q_{H} and the heat ejected at the low temperature, q_{C}. The efficiency is the work divided by the heat put into the system or:
 <math>
\textrm{efficiency} = \frac {w_{cy}}{q_H} = \frac{q_Hq_C}{q_H} = 1  \frac{q_C}{q_H} <math> (2)
where w_{cy} is the work done per cycle. We see that the efficiency depends only on q_{C}/q_{H}. Because q_{C} and q_{H} correspond to heat transfer at the temperatures T_{C} and T_{H}, respectively, q_{C}/q_{H} should be some function of these temperatures:
 <math>
\frac{q_C}{q_H} = f(T_H,T_C) <math> (3)
Carnot's theorem states that all reversible engines operating between the same heat reservoirs are equally efficient. Thus, a heat engine operating between T_{1} and T_{3} must have the same efficiency as one consisting of two cycles, one between T_{1} and T_{2}, and the second between T_{2} and T_{3}. This can only be the case if:
 <math>
q_{13} = \frac{q_1 q_2} {q_2 q_3} <math>
which implies:
 <math>
q_13 = f(T_1,T_3) = f(T_1,T_2)f(T_2,T_3) <math>
Since the first function is independent of T_{2}, this temperature must cancel on the right side, meaning f(T_{1},T_{3}) is of the form g(T_{1})/g(T_{3}) (i.e. f(T_{1},T_{3}) = f(T_{1},T_{2})f(T_{2},T_{3}) = g(T_{1})/g(T_{2})· g(T_{2})/g(T_{3}) = g(T_{1})/g(T_{3})), where g is a function of a single temperature. We can now choose a temperature scale with the property that:
 <math>
\frac{q_C}{q_H} = \frac{T_C}{T_H} <math> (4)
Substituting Equation 4 back into Equation 2 gives a relationship for the efficiency in terms of temperature:
 <math>
\textrm{efficiency} = 1  \frac{q_C}{q_H} = 1  \frac{T_C}{T_H} <math> (5)
Notice that for T_{C} = 0 K the efficiency is 100% and that efficiency becomes greater than 100% below 0 K. Since an efficiency greater than 100% violates the first law of thermodynamics, this implies that 0 K is the minimum possible temperature. In fact the lowest temperature ever obtained in a macroscopic system was 20 nK, which was achieved in 1995 at NIST. Subtracting the right hand side of Equation 5 from the middle portion and rearranging gives:
 <math>
\frac {q_H}{T_H}  \frac{q_C}{T_C} = 0 <math>
where the negative sign indicates heat ejected from the system. This relationship suggests the existence of a state function, S, defined by:
 <math>
dS = \frac {dq_\mathrm{rev}}{T} <math> (6)
where the subscript indicates a reversible process. The change of this state function around any cycle is zero, as is necessary for any state function. This function corresponds to the entropy of the system, which we described previously. We can rearranging Equation 6 to get a new definition for temperature in terms of entropy and heat:
 <math>
T = \frac{dq_\mathrm{rev}}{dS} <math> (7)
For a system, where entropy S may be a function S(E) of its energy E, the termperature T is given by:
 <math>
\frac{1}{T} = \frac{dS}{dE} <math> (8)
The reciprocal of the temperature is the rate of increase of entropy with energy.
Negative temperatures
At low temperatures, particles tend to move to their lowest energy states. As the temperature is increased, particles move into higher and higher energy states. As the temperature becomes infinite, the number of particles in the lower energy states and the higher energy states becomes equal. In some situations, it is possible to create a system in which there are more particles in the higher energy states than in the lower ones. This situation can be described with a negative temperature. A substance with a negative temperature is not colder than absolute zero, but rather it is hotter than infinite temperature.
The previous section described how heat is stored in the various translational, vibrational, rotational, electronic, and nuclear modes of a system. The macroscopic temperature of a system is related to the total heat stored in all of these modes and in a normal system thermal energy is constantly being exchanged between the various modes. However, for some cases it is possible to isolate one or more of the modes. In practice the isolated modes still exchange energy with the other modes, but the time scale of this exchange is much slower than for the exchanges within the isolated mode. One example is the case of nuclear spins in a strong external magnetic field. In this case energy flows fairly rapidly among the spin states of interacting atoms, but energy transfer between the nuclear spins and other modes is relatively slow. Since the energy flow is predominantly within the spin system, it makes sense to think of a spin temperature that is distinct from the temperature due to other modes.
Based on Equation 7, we can say a positive temperature corresponds to the condition where entropy increases as thermal energy is added to the system. This is the normal condition in the macroscopic world and is always the case for the translational, vibrational, rotational, and nonspin related electronic and nuclear modes. The reason for this is that there are an infinite number of these types of modes and adding more heat to the system increases the number of modes that are energetically accessible, and thus the entropy. However, for the case of electronic and nuclear spin systems there are only a finite number of modes available (often just two, corresponding to spin up and spin down). In the absence of a magnetic field, these spin states are degenerate, meaning that they correspond to the same energy. When an external magnetic field is applied, the energy levels are split, since those spin states that are aligned with the magnetic field will have a different energy than those that are antiparallel to it.
In the absence of a magnetic field, one would expect such a twospin system to have roughly half the atoms in the spinup state and half in the spindown state, since this maximizes entropy. Upon application of a magnetic field, some of the atoms will tend to align so as to minimize the energy of the system, thus slightly more atoms should be in the lowerenergy state (for the purposes of this example we'll assume the spindown state is the lowerenergy state). It is possible to add energy to the spin system using radio frequency (RF) techniques. This causes atoms to flip from spindown to spinup. Since we started with over half the atoms in the spindown state, initially this drives the system towards a 50/50 mixture, so the entropy is increasing, corresponding to a positive temperature. However, at some point more than half of the spins are in the spinup position. In this case adding additional energy, reduces the entropy since it moves the system further from a 50/50 mixture. This reduction in entropy with the addition of energy corresponds to a negative temperature.
See also
 Maxwell's demon
 Heat conduction
 ITS90 International Temperature Scale
External links
 Temperature Conversions: Celsius (Centigrade), Fahrenheit, Kelvin, Réaumur and Rankine (http://www.indiana.edu/~animal/fun/conversions/temperature.html)
 An elementary introduction to temperature aimed at a middle school audience (http://www.unidata.ucar.edu/staff/blynds/tmp.html)
 Straight Dope Staff Report: Why do we have so many temperature scales? (http://www.straightdope.com/mailbag/mtempscales.html)
(http://thermodynamicsinformation.net)
Celsius  Fahrenheit  Kelvin  
Delisle  Leyden  Newton  Rankine  Réaumur  Rømer 
Conversion formulas 
ca:Temperatura da:Temperatur de:Temperatur et:Temperatuur es:Temperatura eo:Temperaturo fr:Température gl:Temperatura hr:Temperatura io:Temperaturo id:Suhu is:Hitastig it:Temperatura he:טמפרטורה la:Temperatura lt:Temperatūra nl:Temperatuur ja:温度 pl:Temperatura pt:Temperatura ru:Температура sl:Temperatura fi:Lämpötila sv:Temperatur th:อุณหภูมิ uk:Температура zh:温度