# Quadratic function

(Redirected from Quadratic)
Missing image
Polynomialdeg2.png
f(x) = x2 - x - 2

In mathematics, a quadratic function is a polynomial function of the form

[itex]f(x)=ax^2+bx+c[itex],

where a is nonzero. It takes its name from the Latin quadratus for square, because quadratic functions arise in the calculation of areas of squares. In the case where the domain and codomain are R (the real numbers), the graph of such a function is a parabola.

If the quadratic function is set to be equal to zero, then the result is a quadratic equation.

The square root of a quadratic function gives rise either to an ellipse or to a hyperbola. If a>0 then the equation

[itex] y = \pm \sqrt{a x^2 + b x + c} [itex]

describes a hyperbola. The axis of the hyperbola is determined by the ordinate of the minimum point of the corresponding parabola

[itex] y_p = a x^2 + b x + c. [itex]

If the ordinate is negative, then the hyperbola's axis is horizontal. If the ordinate is positive, then the hyperbola's axis is vertical.

If a<0 then the equation

[itex] y = \pm \sqrt{a x^2 + b x + c} [itex]

describes either an ellipse or nothing at all. If the ordinate of the maximum point of the corresponding parabola

[itex] y_p = a x^2 + b x + c [itex]

is positive, then its square root describes an ellipse, but if the ordinate is negative then it describes an empty locus of points.

A bivariate quadratic function is a second-degree polynomial of the form

[itex] f(x,y) = A x^2 + B y^2 + C x + D y + E x y + F. [itex]

Such a function describes a quadratic surface. Setting f(x,y) equal to zero describes the intersection of the surface with the plane z=0, which is a locus of points equivalent to a conic section.

## Roots

The roots, or solutions to the quadratic function, for variable x, are

[itex] x = \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a} [itex].

For the method of extracting these roots, see quadratic equation.

## See also

##### Navigation

Academic Kids Menu

• Art and Cultures
• Art (http://www.academickids.com/encyclopedia/index.php/Art)
• Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
• Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
• Music (http://www.academickids.com/encyclopedia/index.php/Music)
• Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
• Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
• Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
• Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
• Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
• Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
• Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
• Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
• History (http://www.academickids.com/encyclopedia/index.php/History)
• Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
• Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
• Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
• Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
• Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• United States (http://www.academickids.com/encyclopedia/index.php/United_States)
• Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
• World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
• Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
• Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
• Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
• Science (http://www.academickids.com/encyclopedia/index.php/Science)
• Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
• Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
• Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
• Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
• Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
• Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
• Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
• Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
• Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
• Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
• Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
• Government (http://www.academickids.com/encyclopedia/index.php/Government)
• Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
• Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
• Space and Astronomy
• Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
• Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
• Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
• US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

• Home Page (http://academickids.com/encyclopedia/index.php)
• Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

• Clip Art (http://classroomclipart.com)