Advertisement

Plane (mathematics)

From Academic Kids

In mathematics, a plane is the fundamental two-dimensional object. Intuitively, it may be visualized as a flat infinite piece of paper. Most of the fundamental work in geometry, trigonometry, and graphing is performed in two dimensions, or in other words, in a plane.

Given a plane, one can introduce a Cartesian coordinate system on it in order to label every point on the plane uniquely with two numbers, its coordinates.

In a three-dimensional x-y-z coordinate system, one can define a plane as the set of all solutions of an equation

<math>ax + by + cz + d = 0<math>,

where a, b, c and d are real numbers such that not all of a, b, c are zero. Alternatively, a plane may be described parametrically as the set of all points of the form u + s v + t w where s and t range over all real numbers, and u, v and w are given vectors defining the plane.

A plane is uniquely determined by any of the following combinations:

  • three points not lying on a line
  • a line and a point not lying on the line
  • a point and a line, the normal to the plane
  • two lines which intersect in a single point or are parallel

In three-dimensional space, two different planes are either parallel or they intersect in a line. A line which is not parallel to a given plane intersects that plane in a single point.

Contents

Plane determined by a point and a normal vector

For a point <math> P_0 = (x_0,y_0,z_0) <math> and a vector <math>\vec{n} = (a, b, c) <math>, the plane equation is

<math> ax + by + cz = a x_0 + b y_0 + c z_0 <math>

for the plane passing through the point <math> P_0 <math> and perpendicular to the vector <math>\vec{n}<math>.

Plane after three points

The equation for the plane passing through three points <math> P_1 = (x_1,y_1,z_1) <math>, <math> P_2 = (x_2,y_2,z_2) <math> and <math> P_3 = (x_3,y_3,z_3) <math> can be represented by the following determinant:

<math> \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\

x_2 - x_1 & y_2 - y_1& z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0 <math>

The distance from a point to a plane

For a point <math> P_1 = (x_1,y_1,z_1) <math> and a plane <math>ax + by + cz + d = 0<math>, the distance from <math> P_1 <math> to the plane is:

<math> D = \frac{\left | a x_1 + b y_1 + c z_1+d \right |}{\sqrt{a^2+b^2+c^2}} <math>

The angle between two planes

The angle between the planes <math>a_1 x + b_1 y + c_1 z + d_1 = 0<math> and <math>a_2 x + b_2 y + c_2 z + d_2 = 0<math> is following

<math> \cos {(\alpha)} = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}} <math>.af:Vlak

ca:Pla cs:Rovina da:Plan (matematik) de:Ebene (Mathematik) es:Plano fr:Plan (mathmatiques) he:מישור (גאומטריה) nl:Vlak ja:平面 pl:Płaszczyzna fi:Taso

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools