Advertisement

Half-life

From Academic Kids

For other uses, see Half-life (disambiguation).

The half-life of a radioactive substance is the time required for half of a sample to undergo radioactive decay.

More generally, for a quantity subject to exponential decay, the half-life is the time required for the quantity to fall to half of its initial value. (This article is a narrow discussion of half-life. For phenomena where half-life is applied, see "Related topics" below.)

After # of
Half-lives
Percent of quantity
remaining
0 100%
1 50
2 25
3 12.5
4 6.25
5 3.125
6 1.5625
7 0.78125%

The table at right shows the reduction of the quantity in terms of the number of half-lives elapsed.

Quantities subject to exponential decay are commonly denoted by the symbol N. (This convention suggests a decaying number of discrete items. This interpretation is valid in many, but not all, cases of exponential decay.) If the quantity is denoted by the symbol N, the value of N at a time t is given by the formula:

<math>N(t) = N_0 e^{-\lambda t} \,<math>

where

  • <math>N_0<math> is the initial value of N (at t=0)
  • λ is a positive constant (the decay constant).

When t=0, the exponential is equal to 1, and N(t) is equal to <math>N_0<math>. As t approaches infinity, the exponential approaches zero.

In particular, there is a time <math>t_{1/2} \,<math> such that:

<math>N(t_{1/2}) = N_0\cdot\frac{1}{2} <math>

Substituting into the formula above, we have:

<math>N_0\cdot\frac{1}{2} = N_0 e^{-\lambda t_{1/2}} \,<math>
<math>e^{-\lambda t_{1/2}} = \frac{1}{2} \,<math>
<math>- \lambda t_{1/2} = \ln \frac{1}{2} = - \ln{2} \,<math>
<math>t_{1/2} = \frac{\ln 2}{\lambda} \,<math>

Thus the half-life is 69.3% of the mean lifetime.

Decay by two or more processes

A radioactive element may decay via two or more different processes. These processes may have different probabilities of occuring, and thus there is also a different half-life associated with each process.

As an example, for two decay modes, the ammount of substance left after time t is given by

<math>N(t) = N_0 e^{-\lambda _1 t} e^{-\lambda _2 t} = N_0 e^{-(\lambda _1 + \lambda _2) t}<math>

In a fashion similar to the previous section, we can calculate the new total half-life <math>T _{1/2} \,<math> and we'll find it to be

<math>T_{1/2} = \frac{\ln 2}{\lambda _1 + \lambda _2} \,<math>

or, in terms of the two half-lives

<math>T_{1/2} = \frac{t _1 t _2}{t _1 + t_2} \,<math>

Where <math>t _1 \,<math> is the half-life of the first process, and <math>t _2 \,<math> is the half life of the second process.

Related topics

da:Halveringstid de:Halbwertszeit es:Vida media eo:Duoniĝtempo et:Poolestusaeg fr:Demi-vie it:Emivita nl:Halfwaardetijd ja:半減期 pl:Czas połowicznego rozpadu pt:Meia-vida sv:halveringstid zh:半衰期

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools