Borel's paradox

Borel's paradox (sometimes known as the Borel-Kolmogorov paradox) is a paradox of probability theory relating to conditional probability density functions.

Suppose we have two random variables, X and Y, with joint probability density pX,Y(x,y). We can form the conditional density for Y given X,

<math>p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_{X}(x)}<math>

where pX(x) is the appropriate marginal distribution.

Using the substitution rule, we can reparametrize the joint distribution with the functions U= f(X,Y), V = g(X,Y), and can then form the condition density for V given U.

<math>p_{V|U}(v|u) = \frac{p_{V,U}(u,v)}{p_{U}(u)}<math>

Given a particular condition on X and the equivalent condition on U, intuition suggests that the conditional densities pY|X(y|x) and pV|U(v|u) should also be equivalent. This is not the case in general.

Contents

A concrete example

A uniform distribution

We are given the joint probability density

<math>p_{X,Y}(x,y) =\left\{\begin{matrix} 1, & 0 < y < 1, \quad -y < x < 1 - y \\ 0, & \mbox{otherwise} \end{matrix}\right. <math>

The marginal density of X is calculated to be

<math>p_X(x) =\left\{\begin{matrix} 1+x, & -1 < x \le 0 \\ 1 - x, & 0 < x < 1 \\ 0, & \mbox{otherwise}\end{matrix}\right. <math>

So the conditional density of Y given X is

<math>p_{Y|X}(y|x) =\left\{\begin{matrix} \frac{1}{1+x}, & -1 < x \le 0, \quad -x < y < 1 \\ \\ \frac{1}{1-x}, & 0 < x < 1, \quad 0 < y < 1 - x \\ \\ 0, & \mbox{otherwise}\end{matrix}\right. <math>

which is uniform with respect to y.

Reparameterization

Now, we apply the following transformation:

<math>U = \frac{X}{Y} + 1 \qquad \qquad V = Y.<math>

Using the substitution rule, we obtain

<math>p_{U,V}(u,v) =\left\{\begin{matrix} v, & 0 < v < 1, \quad 0 < u \cdot v < 1 \\ 0, & \mbox{otherwise} \end{matrix}\right. <math>

The marginal distribution is calculated to be

<math>p_U(u) =\left\{\begin{matrix} \frac{1}{2}, & 0 < u \le 1 \\ \\ \frac {1}{2u^2}, & 1 < u < +\infty \\ \\ 0, & \mbox{otherwise}\end{matrix}\right. <math>

So the conditional density of V given U is

<math>p_{V|U}(v|u) =\left\{\begin{matrix} 2v, & 0 < u \le 1, \quad 0 < v < 1 \\ 2u^2v, & 1 < u < +\infty, \quad 0 < v < \frac{1}{u} \\ 0, & \mbox{otherwise}\end{matrix}\right. <math>

which is not uniform with respect to v.

The unintuitive result

Now we pick a particular condition to demonstrate Borel's paradox. The conditional density of Y given X = 0 is

<math>p_{Y|X}(y|x=0) = \left\{\begin{matrix} 1, & 0 < y < 1 \\ 0, & \mbox{otherwise}\end{matrix}\right. <math>

The equivalent condition in the u-v coordinate system is U = 1, and the conditional density of V given U = 1 is

<math>p_{V|U}(v|u=1) = \left\{\begin{matrix} 2v, & 0 < v < 1 \\ 0, & \mbox{otherwise}\end{matrix}\right. <math>

Paradoxically, V = Y and X = 0 is equivalent to U = 1, but

<math>p_{Y|X}(y|x = 0) \ne p_{V|U}(v|u = 1).<math>

See also

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools