Advertisement

Arithmetic-geometric mean

From Academic Kids

In mathematics, the arithmetic-geometric mean M(x, y) of two positive real numbers x and y is defined as follows: we first form the arithmetic mean of x and y and call it a1, i.e. a1 = (x + y) / 2. We then form the geometric mean of x and y and call it g1, i.e. g1 is the square root of xy. Now we can iterate this operation with a1 taking the place of x and g1 taking the place of y. In this way, two sequences (an) and (gn) are defined:

<math>a_{n+1} = \frac{a_n + g_n}{2}<math>

and

<math>g_{n+1} = \sqrt{a_n g_n}.<math>

These two sequences converge to the same number, which we call the arithmetic-geometric mean M(x, y) of x and y.

M(x, y) is a number between the geometric and arithmetic mean of x and y; in particular it is between x and y. If r > 0, then M(rx, ry) = r M(x, y).

M(x, y) is sometimes denoted agm(x, y).

Implementation

The following example code in the Scheme programming language computes the arithmetic-geometric mean of two positive real numbers:

(define agmean
  (lambda (a b epsilon)
    (letrec ((ratio-diff       ; determine whether two numbers
	      (lambda (a b)    ; are already very close together
		(abs (/ (- a b) b))))
	     (loop             ; actually do the computation
	      (lambda (a b)
		;; if they're already really close together,
		;; just return the arithmetic mean
		(if (< (ratio-diff a b) epsilon)
		    (/ (+ a b) 2)
		    ;; otherwise, do another step
		    (loop (sqrt (* a b)) (/ (+ a b) 2))))))
      ;; error checking
      (if (or (not (real? a))
	      (not (real? b))
	      (<= a 0)
	      (<= b 0))
	  (error 'agmean "~s and ~s must both be positive real numbers" a b)
	  (loop a b)))))

One can show that

<math>\Mu(x,y) = \frac{\pi}{4} \cdot \frac{x + y}{K \left( \frac{x - y}{x + y} \right) }<math>

where K(x) is the complete elliptic integral of the first kind.

The reciprocal of the arithmetic-geometric mean of 1 and the Square root of 2 is called Gauss's constant.

<math> \frac{1}{\Mu(1, \sqrt{2})} = G <math>

named after Carl Friedrich Gauss.

The geometric-harmonic mean can be calculated by an analogous method, using sequences of geometric and harmonic means. The arithmetic-harmonic mean is none other than the geometric mean.

See also

pl:Średnia arytmetyczno-geometryczna

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools